Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507653

RESUMO

Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.


Assuntos
Redes Reguladoras de Genes , Genoma , Perfilação da Expressão Gênica , Plantas
2.
J Integr Plant Biol ; 66(4): 824-843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372488

RESUMO

Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.


Assuntos
Arecaceae , Arecaceae/genética , Genômica
3.
Nat Commun ; 15(1): 1635, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388712

RESUMO

Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa. Their common ancestor has experienced a whole-genome triplication (WGT) approximately 64 million years ago coinciding with a period of dramatic global climate change. Sonneratia, adapting mangrove habitats, experienced extensive chromosome rearrangements post-WGT. We observe the WGT retentions display sequence and expression divergence, suggesting potential neo- and sub-functionalization. Strong selection acting on three-copy retentions indicates adaptive value in response to new environments. To elucidate the role of ploidy changes in genome evolution, we improve a model of the polyploidization-rediploidization process based on genomic evidence, contributing to the understanding of adaptive evolution during climate change.


Assuntos
Genoma , Genômica , Genoma/genética , Plantas/genética , Cromossomos , Genoma de Planta/genética , Poliploidia , Evolução Molecular , Filogenia , Duplicação Gênica
4.
Mol Ecol Resour ; 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688468

RESUMO

Ecological restoration of mangrove ecosystems that became susceptible to recent habitat perturbations is crucial for tropical coast conservation. The white mangrove Laguncularia racemosa, a pioneer species inhabiting intertidal environments of the Atlantic East Pacific (AEP) region, has been used for reforestation in China for decades. However, the molecular mechanisms underlying its fast growth and high adaptive potential remain unknown. Using PacBio single-molecule real-time sequencing, we completed a high-quality L. racemosa genome assembly covering 1105 Mb with scaffold N50 of 3.46 Mb. Genomic phylogeny shows that L. racemosa invaded intertidal zones during a period of global warming. Multi-level genomic convergence analyses between L. racemosa and three native dominant mangrove clades show that they experienced convergent changes in genes involved in nutrient absorption and high salinity tolerance. This may explain successful L. racemosa adaptation to stressful intertidal environments after introduction. Without recent whole-genome duplications or activated transposable elements, L. racemosa has retained many tandem gene duplications. Some of them are involved in auxin biosynthesis, intense light stress and cold stress response pathways, associated with L. racemosa's ability to grow fast under high light or cold conditions when used for reforestation. In summary, our study identifies shared mechanisms of intertidal environmental adaptation and unique genetic changes underlying fast growth in mangrove-unfavourable conditions and sheds light on the molecular mechanisms of the white mangrove utility in ecological restoration.

5.
Mar Life Sci Technol ; 5(2): 155-168, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37275537

RESUMO

Mangroves are adapted to intertidal zones, which present extreme environmental conditions. WRKYs are among the most prominent transcription factors (TFs) in higher plants and act through various interconnected networks to regulate responses to multiple abiotic stressors. Here, based on omic data, we investigated the landscape and evolutionary patterns of WRKYs in the main mangrove genus Avicennia. We found that both the number and the proportion of TFs and WRKYs in Avicennia species exceeded their inland relatives, indicating a significant expansion of WRKYs in Avicennia. We identified 109 WRKY genes in the representative species Avicennia marina. Comparative genomic analysis showed that two recent whole-genome duplication (WGD) events played a critical role in the expansion of WRKYs, and 88% of Avicennia marina WRKYs (AmWRKYs) have been retained following these WGDs. Applying comparative transcriptomics on roots under experimental salt gradients, we inferred that there is high divergence in the expression of WGD-retained AmWRKYs. Moreover, we found that the expression of 16 AmWRKYs was stable between freshwater and moderately saline water but increased when the trees were exposed to high salinity. In particular, 14 duplicates were retained following the two recent WGD events, indicating potential neo- and sub-functionalization. We also found that WRKYs could interact with other upregulated genes involved in signalling pathways and natural antioxidant biosynthesis to enhance salt tolerance, contributing to the adaptation to intertidal zones. Our omic data of the WRKY family in A. marina broadens the understanding of how a TF family relates to the adaptive evolution of mangroves. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00177-y.

6.
Mol Ecol ; 32(2): 460-475, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34882881

RESUMO

Whole-genome duplication (WGD) is believed to increase the chance of adaptation to a new environment. This conjecture may apply particularly well to new environments that are not only different but also more variable than ancestral habitats. One such prominent environment is the interface between land and sea, which has been invaded by woody plants, collectively referred as mangroves, multiple times. Here, we use two distantly related mangrove species (Avicennia marina and Rhizophora apiculata) to explore the effects of WGD on the adaptive process. We found that a high proportion of duplicated genes retained after WGD have acquired derived differential expression in response to salt gradient treatment. The WGD duplicates differentially expressed in at least one copy usually (>90%) diverge from their paralogues' expression profiles. Furthermore, both species evolved in parallel to have one paralogue expressed at a high level in both fresh water and hypersaline conditions but at a lower level at medium salinity. The pattern contrasts with the conventional view of monotone increase/decrease as salinity increases. Differentially expressed copies have thus probably acquired a new role in salinity tolerance. Our results indicate that the WGD duplicates may have evolved to function collaboratively in coping with different salinity levels, rather than specializing in the intermediate salinity optimal for mangrove plants. In conclusion, WGD and the retained duplicates appear to be an effective solution for adaptation to new and unstable environments.


Assuntos
Duplicação Gênica , Salinidade , Genoma , Adaptação Fisiológica/genética , Plantas/genética
7.
Mol Ecol ; 32(6): 1351-1365, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35771769

RESUMO

How plants adapt and diverge in extreme environments is a key question of plant evolution and ecology. Mangrove invasion of intertidal environments is facilitated by adaptive phenotypes such as aerial roots, salt-secreting leaf, and viviparity, and genomic mechanisms including whole genome duplication and transposable element number reduction. However, a number of mangroves lack these typical phenotypes. The question we ask is whether these phenotypically atypical mangroves also have distinct genomic features? The sibling mangrove species Lumnitzera littorea and Lumnitzera racemosa provide a model to study this question. We sequenced and assembled their genomes to chromosome level, together with a closely related species Combretum micranthum. While most mangroves have small genomes, the genomes of both Lumnitzera species are large (1443 and 1317 Mb) and carry a high proportion of repeat sequences (~75%). Moreover, Lumnitzera species have not undergone post-gamma whole-genome duplications. Their genome size increased mainly due to the expansion of repeat sequences in their ancestors. However, Lumnitzera genomes have reduced transposable elements by constraining the proliferation of new LTR-RTs. Meanwhile, the two species have more gene families contracted than expanded, and some gene families with reversed size change may underlie their differentiation in root morphology and local distribution. We identified 86 chromosomal inversions, five of which are measured between 6.5 and 12.8 megabases. A number of genes located in these inversions function in pigment biosynthesis, a process likely involved in flower colour differentiation between the Lumnitzera species. We conclude that the mangroves with atypical phenotypes also have atypical genomic evolution.


Assuntos
Adaptação Fisiológica , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Adaptação Fisiológica/genética , Plantas/genética , Aclimatação , Genômica
8.
Front Microbiol ; 13: 966219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238593

RESUMO

The haptophyte Isochrysis galbana is considered as a promising source for food supplements due to its rich fucoxanthin and polyunsaturated fatty acids content. Here, the I. galbana mitochondrial genome (mitogenome) was sequenced using a combination of Illumina and PacBio sequencing platforms. This 39,258 bp circular mitogenome has a total of 46 genes, including 20 protein-coding genes, 24 tRNA genes and two rRNA genes. A large block of repeats (~12.7 kb) was segregated in one region of the mitogenome, accounting for almost one third of the total size. A trans-spliced gene cox1 was first identified in I. galbana mitogenome and was verified by RNA-seq and DNA-seq data. The massive expansion of tandem repeat size and cis- to trans-splicing shift could be explained by the high mitogenome rearrangement rates in haptophytes. Strict SNP calling based on deep transcriptome sequencing data suggested the lack of RNA editing in both organelles in this species, consistent with previous studies in other algal lineages. To gain insight into haptophyte mitogenome evolution, a comparative analysis of mitogenomes within haptophytes and among eight main algal lineages was performed. A core gene set of 15 energy and metabolism genes is present in haptophyte mitogenomes, consisting of 1 cob, 3 cox, 7 nad, 2 atp and 2 ribosomal genes. Gene content and order was poorly conserved in this lineage. Haptophyte mitogenomes have lost many functional genes found in many other eukaryotes including rps/rpl, sdh, tat, secY genes, which make it contain the smallest gene set among all algal taxa. All these implied the rapid-evolving and more recently evolved mitogenomes of haptophytes compared to other algal lineages. The phylogenetic tree constructed by cox1 genes of 204 algal mitogenomes yielded well-resolved internal relationships, providing new evidence for red-lineages that contained plastids of red algal secondary endosymbiotic origin. This newly assembled mitogenome will add to our knowledge of general trends in algal mitogenome evolution within haptophytes and among different algal taxa.

9.
Front Plant Sci ; 13: 995855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212296

RESUMO

Sesuvium portulacastrum has a strong salt tolerance and can grow in saline and alkaline coastal and inland habitats. This study investigated the physiological and molecular responses of S. portulacastrum to high salinity by analyzing the changes in plant phytohormones and antioxidant activity, including their differentially expressed genes (DEGs) under similar high-salinity conditions. High salinity significantly affected proline (Pro) and hydrogen peroxide (H2O2) in S. portulacastrum seedlings, increasing Pro and H2O2 contents by 290.56 and 83.36%, respectively, compared to the control. Antioxidant activities, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), significantly increased by 83.05, 205.14, and 751.87%, respectively, under high salinity. Meanwhile, abscisic acid (ABA) and gibberellic acid (GA3) contents showed the reverse trend of high salt treatment. De novo transcriptome analysis showed that 36,676 unigenes were matched, and 3,622 salt stress-induced DEGs were identified as being associated with the metabolic and biological regulation processes of antioxidant activity and plant phytohormones. POD and SOD were upregulated under high-salinity conditions. In addition, the transcription levels of genes involved in auxin (SAURs and GH3), ethylene (ERF1, ERF3, ERF114, and ABR1), ABA (PP2C), and GA3 (PIF3) transport or signaling were altered. This study identified key metabolic and biological processes and putative genes involved in the high salt tolerance of S. portulacastrum and it is of great significance for identifying new salt-tolerant genes to promote ecological restoration of the coastal strand.

10.
Plant J ; 111(5): 1411-1424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796621

RESUMO

Adaptation to new environments is a key evolutionary process which presumably involves complex genomic changes. Mangroves, a collection of approximately 80 woody plants that have independently invaded intertidal zones >20 times, are ideal for studying this process. We assembled near-chromosome-scale genomes of three Xylocarpus species as well as an outgroup species using single-molecule real-time sequencing. Phylogenomic analysis reveals two separate lineages, one with the mangrove Xylocarpus granatum and the other comprising a mangrove Xylocarpus moluccensis and a terrestrial Xylocarpus rumphii. In conjunction with previous studies, we identified several genomic features associated with mangroves: (i) signals of positive selection in genes related to salt tolerance and root development; (ii) genome-wide elevated ratios of non-synonymous to synonymous substitution relative to terrestrial relatives; and (iii) active elimination of long terminal repeats. These features are found in the terrestrial X. rumphii in addition to the two mangroves. These genomic features, not being strictly mangrove-specific, are hence considered pre-adaptive. We infer that the coastal but non-intertidal habitat of X. rumphii may have predisposed the common ancestor to invasion of true mangrove habitats. Other features including the preferential retention of duplicated genes and intolerance to pseudogenization are not found in X. rumphii and are likely true adaptive features in mangroves. In conclusion, by studying adaptive shift and partial shifts among closely related species, we set up a framework to study genomic features that are acquired at different stages of the pre-adaptation and adaptation to new environments.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Adaptação Fisiológica/genética , Ecossistema , Genoma , Genômica , Plantas/genética
11.
Nat Ecol Evol ; 6(6): 738-749, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35484219

RESUMO

Genomic studies are now poised to explore whole communities of species. The ~70 species of woody plants that anchor the coastal ecosystems of the tropics, collectively referred to as mangroves, are particularly suited to this exploration. In this study, we de novo sequenced the whole genomes of 32 mangroves, which we combined with other sequences of 30 additional species, comprising almost all mangroves globally. These community-wide genomic data will be valuable for ecology, evolution and biodiversity research. While the data revealed 27 independent origins of mangroves, the total phylogeny shows only modest increases in species number, even in coastal areas of active speciation, suggesting that mangrove extinction is common. A possible explanation for common extinction is the frequent sea-level rises and falls (SLRs and SLFs) documented in the geological record. Indeed, near-extinctions of species with extremely small population size (N) often happened during periods of rapid SLR, as revealed by the genome-wide heterozygosity of almost all mangroves. Reduction in N has possibly been further compounded by population fragmentation and the subsequent accumulation of deleterious mutations, thus pushing mangroves even closer to extinction. Crucially, the impact of the next SLR will be exacerbated by human encroachment into these mangrove habitats, potentially altering the ecosystems of tropical coasts irreversibly.


Assuntos
Ecossistema , Florestas , Genoma , Humanos , Filogenia , Plantas
12.
Natl Sci Rev ; 9(12): nwac280, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36694801

RESUMO

In the conventional view, species are separate gene pools delineated by reproductive isolation (RI). In an alternative view, species may also be delineated by a small set of 'speciation genes' without full RI, a view that has gained broad acceptance. A recent survey, however, suggested that the extensive literature on 'speciation with gene flow' is mostly (if not all) about exchanges in the early stages of speciation. There is no definitive evidence that the observed gene flow actually happened after speciation is completed. Here, we wish to know whether 'good species' (defined by the 'secondary sympatry' test) do continue to exchange genes and, importantly, under what conditions such exchanges can be observed. De novo whole-genome assembly and re-sequencing of individuals across the range of two closely related mangrove species (Rhizophora mucronata and R. stylosa) reveal the genomes to be well delineated in allopatry. They became sympatric in northeastern Australia but remain distinct species. Nevertheless, their genomes harbor ∼4000-10 000 introgression blocks averaging only about 3-4 Kb. These fine-grained introgressions indicate continual gene flow long after speciation as non-introgressable 'genomic islets,' ∼1.4 Kb in size, often harbor diverging genes of flower or gamete development. The fine-grained introgression in secondary sympatry may help settle the debate about sympatric vs. micro-allopatric speciation. In conclusion, true 'good species' may often continue to exchange genes but the opportunity for detection is highly constrained.

13.
Mol Ecol ; 31(3): 780-797, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34826188

RESUMO

Historic climate changes drive geographical populations of coastal plants to contract and recover dynamically, even die out completely. Species suffering from such bottlenecks usually lose intraspecific genetic diversity, but how do these events influence population subdivision patterns of coastal plants? Here, we investigated this question in the typical coastal plant: mangrove species Aegiceras corniculatum. Inhabiting the intertidal zone of the tropical and subtropical coast of the Indo-West Pacific oceans, its populations are deemed to be greatly shaped by historic sea-level fluctuations. Using dual methods of Sanger and Illumina sequencing, we found that the 18 sampled populations were structured into two groups, namely, the "Indo-Malayan" group, comprising three subgroups (the northern South China Sea, Gulf of Bengal, and Bali), and the "Pan-Australasia" group, comprising the subgroups of the southern South China Sea and Australasia. Based on the approximate Bayesian computations and Stairway Plot, we inferred that the southern South China Sea subgroup, which penetrates the interior of the "Indo-Malayan" group, originated from the Australasia subgroup, accompanied by a severe bottleneck event, with a spot of gene flow from both the Australasia and "Indo-Malayan" groups. Geographical barriers such as the Sundaland underlie the genetic break between Indian and Pacific Oceans, but the discontinuity between southern and northern South China Sea was originated from genetic drift in the bottleneck event. Hence, we revealed a case evidencing that the bottleneck event promoted population subdivision. This conclusion may be applicable in other taxa beyond coastal plants.


Assuntos
Fluxo Gênico , Primulaceae , Teorema de Bayes , Evolução Biológica , Oceano Pacífico , Filogenia , Primulaceae/genética
14.
iScience ; 24(10): 103148, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34646986

RESUMO

Tropical plants have adapted to strong solar ultraviolet (UV) radiation. Here we compare molecular responses of two tropical mangroves Avecennia marina and Rhizophora apiculata to high-dose UV-B. Whole-genome bisulfate sequencing indicates that high UV-B induced comparable hyper- or hypo-methylation in three sequence contexts (CG, CHG, and CHH, where H refers to A, T, or C) in A. marina but mainly CHG hypomethylation in R. apiculata. RNA and small RNA sequencing reveals UV-B induced relaxation of transposable element (TE) silencing together with up-regulation of TE-adjacent genes in R. apiculata but not in A. marina. Despite conserved upregulation of flavonoid biosynthesis and downregulation of photosynthesis genes caused by high UV-B, A. marina specifically upregulated ABC transporter and ubiquinone biosynthesis genes that are known to be protective against UV-B-induced damage. Our results point to divergent responses underlying plant UV-B adaptation at both the epigenetic and transcriptional level.

15.
PeerJ ; 9: e11506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141477

RESUMO

Sonneratia caseolaris is a native mangrove species found in China. It is fast growing and highly adaptable for mangrove afforestation, but suffered great damage by chilling event once introduced to high latitude area. To understand the response mechanisms under chilling stress, physiological and transcriptomic analyses were conducted. The relative electrolyte conductivity, malondialdehyde (MDA) content, soluble sugar content and soluble protein content increased significantly under chilling stress. This indicated that S. caseolaris suffered great damage and increased the levels of osmoprotectants in response to the chilling stress. Gene expression comparison analysis of S. caseolaris leaves after 6 h of chilling stress was performed at the transcriptional scale using RNA-Seq. A total of 168,473 unigenes and 3,706 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses showed that the DEGs were mainly involved in carbohydrate metabolism, antioxidant enzyme, plant hormone signal transduction, and transcription factors (TFs). Sixteen genes associated with carbohydrate metabolism, antioxidant enzyme, phytohormones and TFs were selected for qRT-PCR verification, and they indicated that the transcriptome data were reliable. Our work provided a comprehensive review of the chilling response of S. caseolaris at both physiological and transcriptomic levels, which will prove useful for further studies on stress-responses in mangrove plants.

16.
New Phytol ; 231(6): 2346-2358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34115401

RESUMO

Mangroves have colonised extreme intertidal environments characterised by high salinity, hypoxia and other abiotic stresses. Aegiceras corniculatum, a pioneer mangrove species that has evolved two specialised adaptive traits (salt secretion and crypto-vivipary) is an attractive ecological model to investigate molecular mechanisms underlying adaptation to intertidal environments. We assembled de novo a high-quality reference genome of A. corniculatum and performed comparative genomic and transcriptomic analyses to investigate molecular mechanisms underlying adaptation to intertidal environments. We provide evidence that A. corniculatum experienced a whole-genome duplication (WGD) event c. 35 Ma. We infer that maintenance of cellular environmental homeostasis is an important adaptive process in A. corniculatum. The 14-3-3 and H+ -ATPase protein-coding genes, essential for the salt homeostasis, were preferentially retained after the recent WGD event. Using comparative transcriptomics, we show that genes upregulated under high-salt conditions are involved in salt transport and ROS scavenging. We also found that all homologues of DELAY OF GERMINATION1 (DOG1) had lost their heme-binding ability in A. corniculatum, and that this may contribute to crypto-vivipary. Our study provides insight into the genomic correlates of phenotypic adaptation to intertidal environments. This could contribute not only within the genomics community, but also to the field of plant evolution.


Assuntos
Primulaceae , Perfilação da Expressão Gênica , Genômica , Primulaceae/genética , Salinidade , Estresse Fisiológico
17.
PhytoKeys ; 154: 1-9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32843846

RESUMO

Here, we describe, illustrate and compare a new natural hybrid, Sonneratia × zhongcairongii Y. S. Wang & S. H. Shi (Sonneratiaceae), with its possible parent species. Based on its morphological characteristics and habitat conditions, this taxon is considered to represent a sterile hybrid between S. alba and S. apetala. In China, the new hybrid is only reported in the mangrove forest in Dongzhai Harbour, Hainan Island. It has intermediate characteristics with its parents by elliptical leaf blades, peltate stigma, terminal or axillary inflorescence with 1-3 flower dichasia, cup - shaped calyx (4-6 calyx lobes) and no petals. We also provide a key for the identification of Sonneratia species.

18.
BMC Plant Biol ; 20(1): 178, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321423

RESUMO

BACKGROUND: Mangroves have adapted to intertidal zones - the interface between terrestrial and marine ecosystems. Various studies have shown adaptive evolution in mangroves at physiological, ecological, and genomic levels. However, these studies paid little attention to gene regulation of salt adaptation by transcriptome profiles. RESULTS: We sequenced the transcriptomes of Sonneratia alba under low (fresh water), medium (half the seawater salinity), and high salt (seawater salinity) conditions and investigated the underlying transcriptional regulation of salt adaptation. In leaf tissue, 64% potential salinity-related genes were not differentially expressed when salinity increased from freshwater to medium levels, but became up- or down-regulated when salt concentrations further increased to levels found in sea water, indicating that these genes are well adapted to the medium saline condition. We inferred that both maintenance and regulation of cellular environmental homeostasis are important adaptive processes in S. alba. i) The sulfur metabolism as well as flavone and flavonol biosynthesis KEGG pathways were significantly enriched among up-regulated genes in leaves. They are both involved in scavenging ROS or synthesis and accumulation of osmosis-related metabolites in plants. ii) There was a significantly increased percentage of transcription factor-encoding genes among up-regulated transcripts. High expressions of salt tolerance-related TF families were found under high salt conditions. iii) Some genes up-regulated in response to salt treatment showed signs of adaptive evolution at the amino acid level and might contribute to adaptation to fluctuating intertidal environments. CONCLUSIONS: This study first elucidates the mechanism of high-salt adaptation in mangroves at the whole-transcriptome level by salt gradient experimental treatments. It reveals that several candidate genes (including salt-related genes, TF-encoding genes, and PSGs) and major pathways are involved in adaptation to high-salt environments. Our study also provides a valuable resource for future investigation of adaptive evolution in extreme environments.


Assuntos
Lythraceae/genética , Tolerância ao Sal/genética , Transcriptoma/fisiologia , Perfilação da Expressão Gênica , Salinidade , Estresse Fisiológico/genética , Árvores/genética
19.
Natl Sci Rev ; 7(6): 978-993, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34692119

RESUMO

Sequencing multiple species that share the same ecological niche may be a new frontier for genomic studies. While such studies should shed light on molecular convergence, genomic-level analyses have been unsuccessful, due mainly to the absence of empirical controls. Woody plant species that colonized the global tropical coasts, collectively referred to as mangroves, are ideal for convergence studies. Here, we sequenced the genomes/transcriptomes of 16 species belonging in three major mangrove clades. To detect convergence in a large phylogeny, a CCS+ model is implemented, extending the more limited CCS method (convergence at conservative sites). Using the empirical control for reference, the CCS+ model reduces the noises drastically, thus permitting the identification of 73 convergent genes with P true (probability of true convergence) > 0.9. Products of the convergent genes tend to be on the plasma membrane associated with salinity tolerance. Importantly, convergence is more often manifested at a higher level than at amino-acid (AA) sites. Relative to >50 plant species, mangroves strongly prefer 4 AAs and avoid 5 others across the genome. AA substitutions between mangrove species strongly reflect these tendencies. In conclusion, the selection of taxa, the number of species and, in particular, the empirical control are all crucial for detecting genome-wide convergence. We believe this large study of mangroves is the first successful attempt at detecting genome-wide site convergence.

20.
Natl Sci Rev ; 6(2): 275-288, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31258952

RESUMO

Allopatric speciation requiring an unbroken period of geographical isolation has been the standard model of neo-Darwinism. While doubts have been repeatedly raised, strict allopatry without any gene flow remains a plausible mechanism in most cases. To rigorously reject strict allopatry, genomic sequences superimposed on the geological records of a well-delineated geographical barrier are necessary. The Strait of Malacca, narrowly connecting the Pacific and Indian Ocean coasts, serves at different times either as a geographical barrier or a conduit of gene flow for coastal/marine species. We surveyed 1700 plants from 29 populations of 5 common mangrove species by large-scale DNA sequencing and added several whole-genome assemblies. Speciation between the two oceans is driven by cycles of isolation and gene flow due to the fluctuations in sea level leading to the opening/closing of the Strait to ocean currents. Because the time required for speciation in mangroves is longer than the isolation phases, speciation in these mangroves has proceeded through many cycles of mixing-isolation-mixing, or MIM, cycles. the MIM mechanism, by relaxing the condition of no gene flow, can promote speciation in many more geographical features than strict allopatry can. Finally, the MIM mechanism of speciation is also efficient, potentially yielding m n (m > 1) species ather n cycles. SIGNIFICANCE STATEMENT: Mechanisms of species formation have always been a conundrum. Speciation between populations that are fully geographically isolated, or allopatric speciation, has been the standard solution in the last 50 years. Complete geographical isolation with no possibility of gene flow, however, is often untenable and is inefficient in generating the enormous biodiversity. By studying mangroves on the Indo-Malayan coasts, a global hotspot of coastal biodiversity, we were able to combine genomic data with geographical records on the Indo-Pacific Barrier that separates Pacific and Indian Ocean coasts. We discovered a novel mechanism of speciation that we call mixingisolation-mixing (MIM) cycles. By permitting intermittent gene flow during speciation,MIMcycles can potentially generate species at an exponential rate, thus combining speciation and biodiversity in a unified framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...